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Agenda AI: LLM-Powered Scheduling Assistant for Emails 
 
1. Introduction 
 
Agenda AI helps professionals and academics manage the chaos of scheduling hidden in messy 
email inboxes. Many meeting-related emails are informal, missing calendar invites, or buried in 
long threads, making it easy to miss important details. Our goal is to build an assistant that can 
understand these emails, extract relevant meeting information, and answer natural language 
questions about scheduling. 
 
To do this, we combine a Retrieval-Augmented Generation (RAG) system with an agent-based 
reasoning loop. Emails are pre-processed with metadata and enhanced with summaries and 
inferred questions using GPT-4o mini. These enriched documents are embedded using 
sentence-transformers and stored in a vector database. A retriever surfaces relevant documents, 
which are re-ranked before being passed to the agent. 
 
We evaluate Agenda AI using a small benchmark of manually constructed user queries. These 
test the system’s ability to (1) find events on specific dates, (2) handle vague time references like 
“next week,” and (3) resist hallucination when presented with false premises. We measure 
success using an LLM-based evaluator that checks whether the response is semantically close to 
the correct answer. 
 
1.1 Example Task 
The user requests information about their schedule for a particular date, and follows up with a 
request for additional information. The model fetches the relevant emails to answer the initial 
question and the follow-up question.  
 
User: What meetings do I have on June 5? 
Agent: 
Here’s your schedule for June 5:  

1. Meeting: GE End World Hunger Contract — 9:00–10:30 AM, 
Conf. Room EB38C2 

2. Presentation: MDEA Delphi App — 4:00–5:00 PM, Room 3125B 
3. Happy Hour — 5:00–8:00 PM, Front Porch Pub 

User: Add my flight info for june and show me the full schedule 

Agent:  
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Your flight information has been added to your calendar. Here’s 
your full schedule for June 5: 

1. Meeting: GE End World Hunger Contract — 9:00–10:30 AM, 
Conf. Room EB38C2 

2. Presentation: MDEA Delphi App — 4:00–5:00 PM, Room 3125B 
3. Happy Hour — 5:00–8:00 PM, Front Porch Pub 

Additionally, you have the following flights scheduled: 

- Flight to Memphis: Departs June 4 at 7:45 AM, arrives 9:30 
AM (Seat 11C) 

- Return Flight: Departs June 4 at 5:55 PM, arrives 7:40 PM 
(Seat 12C) 

2. Methods 
 
2.1 Dataset and Preprocessing 
Our goal is to provide the agent with a realistic and challenging set of emails for evaluation. We 
begin with the Enron email corpus, a publicly available dataset on Kaggle that contains over 
500,000 emails from multiple users. We randomly sample 200,000 emails and identify the four 
most active users based on email volume. 

For each of these users, we aim to curate a set of 3,000 high-quality emails. The processing 
pipeline, implemented in process_emails.py, involves several stages. First, each email is 
parsed using Python’s email library to extract metadata such as sender, recipient, subject, date, 
and plain text content. We then apply filters to exclude sent emails, newsletters, and transcripts, 
and remove duplicates. 

To identify scheduling-related content, we use a simple rule-based classifier that checks for the 
presence of meeting-related keywords in the subject or body of the email. If more than 3,000 
emails are available for a user, we retain all meeting-related emails and randomly sample from 
the rest to maintain balance. 

In a realistic scheduling scenario, a person’s schedule for the upcoming week is often shaped by 
emails received in the previous one to two weeks. To reflect this, we use the four user datasets 
generated in process_emails.py and analyze them in data_cleaning.ipynb. 
Through this analysis, we identify Kay Mann’s inbox as having the highest density of 
scheduling-related content as well as a good balance of personal and professional emails. From 
her data, we select a focused subset of 154 emails from the end of May to the beginning of June 
2001 for evaluation. 

 

https://www.kaggle.com/code/gpreda/parse-and-process-enron-emails-dataset/input
https://github.com/BrandonLim8890/email-scheduler/blob/main/process_emails.py
https://github.com/BrandonLim8890/email-scheduler/blob/main/data_cleaning.ipynb
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2.2 Retrieval Architecture 
To support natural language queries over an unstructured inbox, we use a Retrieval-Augmented 
Generation (RAG) system. The indexing pipeline is implemented in index_emails.py. 
Each email is first converted into a document that includes both the raw email content and 
metadata such as sender, recipient, subject line, and sent date. This metadata is preserved during 
indexing and later used to ground the agent’s responses with useful context. 

To further improve the usefulness of retrieval, each document is enhanced with additional 
LLM-generated information. Specifically, we prompt GPT-4o mini  to extract key topics (such as 
specific dates, times, locations, and participants) as well as potential questions the email could 
answer (see Figure 1). These enhancements are appended to the original email text and stored 
alongside it in the vector store, which emails to a 768-dimensional vector space. We use Chroma 
for the vector store, with sentence-transformers/all-mpnet-base-v2 as the 
embeddings model. 

 

Figure 1: The prompt used to add additional context to emails for aiding retrieval. 

The retrieval tool first runs a similarity search to fetch the 25 most relevant documents based on 
cosine similarity. We then re-rank those documents using BAAI/bge-reranker-large, and 
return the top five most relevant documents as context. Adding LLM-generated context to our 
documents as well as implementing additional re-ranking proved to be especially useful for 
retrieval. Without any task-specific fine-tuning, the system can identify relevant messages and 
answer complex scheduling queries grounded in real email content. 

2.3 Agent Architecture 
The agent architecture follows two modes: a graph-based router and a ReAct-style agent, both 
built using the LangChain Python library. Figure 2 compares the two modes. 

 

https://github.com/BrandonLim8890/email-scheduler/blob/main/index_emails.py
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/BAAI/bge-reranker-large
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Figure 2: Diagram of the two agent architectures used in our system. The left shows the 

graph-based agent with separate routing, tool invocation, and response generation nodes. The 
right shows the ReAct agent, which dynamically decides when to use tools and when to respond. 

In the graph-based mode, implemented in llama.py,  we use Llama-3.1-8B-Instruct  
to drive both decision-making and generation. When a user submits a query, it enters the graph 
through the query_or_respond node. This step determines whether the query is related to 
meetings, events, or scheduling using a classification prompt. If the model predicts that the query 
is scheduling-related, we force the model to invoke the retrieve tool described in section 2.2 
(line 40). This step was necessary due to limitations in this smaller version of Llama: we 
observed that it struggled to decide to invoke the retrieval tool and frequently produced 
hallucinated responses when left to decide autonomously. Once the top documents are selected, 
the flow continues to the generate node (line 84). This node constructs a system prompt that 
combines the retrieved email content with associated metadata (like subject and date), and asks 
the model to generate a concise response. 
 
In the ReAct-style agent, implemented in 4o_mini.py, we use GPT-4o mini  as the underlying 
model, due to Llama’s difficulty in autonomously deciding when to use tools. This agent 
operates using the standard Thought → Action → Observation loop, enabling it to reason 
step-by-step through a query. Unlike the graph-based approach, the ReAct agent dynamically 

 

https://github.com/BrandonLim8890/email-scheduler/blob/main/llama.py
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://github.com/BrandonLim8890/email-scheduler/blob/main/4o_mini.py
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decides whether to respond directly or invoke one of the available tools, and is able to make 
multiple tool calls before coming back to the user. In our evaluation, we focused on the 
retrieve tool, but we also implemented a prototype of an add_to_calendar tool which 
integrates with Google Calendar and allows the agent to add events to a user’s calendar. The 
system is initialized with a concise system prompt (line 82) that instructs the agent to focus on 
scheduling-related questions. This setup allows the agent to handle a wider range of queries 
while staying focused on responding to scheduling-related content based on retrieved emails. 

3. Evaluation 
 
3.1 Testing Attempts 
Testing our scheduling agent presented unique challenges unlike traditional software validation, 
as conversational AI outputs cannot be evaluated through simple correctness checks. The 
complexity stemmed from the diverse formats in which scheduling information could be 
effectively presented, ranging from structured bullet points to differentiated event titles and 
narrative descriptions. While we considered constraining the agent to produce standardized 
schedule formats amenable to regex testing through few-shot learning, we ultimately rejected 
this approach as it would have compromised the agent's ability to provide contextual information 
about events when users made follow-up inquiries (such as "who is attending this meeting?"). 
We prioritized preserving the agent's conversational flexibility and comprehensive response 
capabilities over simplifying our testing methodology. 
 
3.2 Testing Methodology 
To overcome our testing challenges, we implemented an evaluation framework utilizing a 
separate "evaluator model" that assesses the accuracy of our scheduling agent's outputs against 
predefined ground truth test cases. This approach elegantly solved our testing dilemma by 
allowing the agent to maintain its conversational flexibility and diverse output formats while still 
enabling rigorous validation of its scheduling capabilities. Rather than forcing our agent to 
conform to easily testable but restrictive output schemas, the evaluator model applies semantic 
understanding to determine if the generated schedules contain all required information regardless 
of presentation format. By decoupling generation from evaluation, we created a more robust 
testing methodology that preserves the agent's ability to handle natural follow-up questions about 
event details. Below is an example from our test.yaml configuration file demonstrating this 
approach: 
 
- user_messages: 
    - What meetings do I have on June 2nd? 
  expected_result: "There are no meetings on June 2nd / I don't 
know" 
 

 

https://github.com/BrandonLim8890/email-scheduler/blob/main/tests.yaml
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Our test script will run the user messages into the agent, take the output and feed it to the 
evaluator model, prompting it to compare the agent’s output to the expected result (see Figure 3). 
 

 
Figure 3: The prompt used for evaluating our agent’s responses. 

 
3.3 Quantitative Evaluation 
We constructed a total of 12 test cases ranging from simple queries to more complex multi-turn 
interactions, and even some that tried to trick the agent into hallucinating. We tested both 
Llama-3.1-8B-Instruct with our graph-based router approach and GPT-4o mini with 
our ReAct approach. For evaluation, we use the dataset of 154 emails from Kay Mann’s inbox 
described in section 2.1, as well as a subset of that dataset consisting of only meeting-related 
emails, of which there are 114. Both models were configured to generate with a sampling 
temperature of 0.4. We ran each test 6 times and obtained the results in Table 1. 
 

Model / Architecture Dataset Pass@1 

Llama 3.1 8B / Graph Meeting-related only 62% 

Llama 3.1 8B / Graph Full inbox 15% 

GPT-4o mini / ReAct Meeting-related only 90% 

GPT-4o mini / ReAct Full inbox 70% 

Table 1: Evaluation Results for our benchmark. 
 
Based on our results and the model responses logged during testing, we observed that Llama 
struggles when trying to answer follow-up questions, leading to a much lower success rate. It 
often fails to use the retrieval tool even with the router implemented. GPT-4o mini, on the other 
hand, performed quite well, even when the inbox included emails not related to meetings and 
scheduling.  
 
3.4 Qualitative Evaluation 
Writing automated tests for our agent was difficult and likely did not capture the full picture of 
the agent’s capabilities. We thus spent a lot of time interacting with the agent ourselves and 
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verifying its outputs. Figures 4-6 show some examples of the conversations we’ve attempted. 

 
Figure 4: A user requests their flight information, without specifying a date. The model is able to 

find the only flight information mentioned in the email inbox and returns all relevant details. 
 

 
Figure 5: A user asks about information on someone’s birthday, and follows up with a question 

related to the birthday. The model is able to find and get the date of the birthday and connect that 
the day off is related to it as well. 

 

 
Figure 6: A user asks about a schedule on a specific day and follows up inquiring about any 

additional information. The model is able to first get the scheduled item of the day and answer 
the follow up question about anything that there is needed to know about that day. 

 
Our qualitative assessment revealed that while our implementation demonstrated robustness 
when faced with unusual tasks, the models exhibited significantly different behavior in 
real-world use. Llama 3.1 8B frequently struggled with utilizing the retrieval tool despite our 
graph-based router implementation, often failing to retrieve relevant information when needed. 
This resulted in disjointed interactions where users would need to repeat themselves or rephrase 

 



8 

questions to get appropriate responses. In contrast, GPT-4o mini excelled at maintaining 
conversational continuity, consistently accessing the retrieval tool when required.  
 
4. Discussion 
 
4.1 Early Attempts 
Our initial goal was to use our own emails as the dataset instead of relying on the Enron corpus. 
We explored the possibility of downloading personal email data into a CSV format, focusing 
specifically on our Northeastern Outlook accounts. However, this approach quickly proved 
impractical. Exporting emails from Outlook would have required administrative permissions 
which were outside the scope and timeline of our project. As a result, we pivoted to using the 
publicly available Enron email dataset. 
 
4.2 Alternative Approaches and Future Work 
Due to time constraints, we were unable to implement several ideas that we had initially 
considered. This section outlines a few of those directions, which could be explored in future 
iterations of the project. 
 
4.2.1 Google Suite Integration 
We originally envisioned integrating our agent with Gmail and Google Calendar, allowing the 
system to directly access a user’s inbox and calendar. While this feature wasn’t fully realized, we 
did prototype the ability to automatically add scheduled events to Google Calendar. However, we 
didn’t have time to fully test it, so we omitted this from our final presentation. In the future, we’d 
like to build on this by linking directly to a live inbox, enabling the agent to work with real-time 
email data and offer more personalized scheduling support. 
 
4.2.2 Improving Llama Integration 
Our integration with the Llama model was somewhat unconventional. Unlike GPT-4, which was 
able to follow a standard ReAct-style agent loop, Llama required more manual prompting and 
routing. If we were to continue this project, we would explore fine-tuning the Llama model to 
better support tool usage within a conventional agent framework. Despite these limitations, 
Llama occasionally produced strong responses when it functioned correctly. With better tool 
invocation and more consistent behavior, its performance could likely be improved significantly. 
 
5. Code, Benchmark, and Dataset 
Our full code can be found at: https://github.com/BrandonLim8890/email-scheduler 
The initial dataset of Enron emails was downloaded from: 
https://www.kaggle.com/code/gpreda/parse-and-process-enron-emails-dataset/input 
Our automated benchmark can be found at: 
https://github.com/BrandonLim8890/email-scheduler/blob/main/tests.yaml 

 

https://github.com/BrandonLim8890/email-scheduler
https://www.kaggle.com/code/gpreda/parse-and-process-enron-emails-dataset/input
https://github.com/BrandonLim8890/email-scheduler/blob/main/tests.yaml

